A SIMPLE SYNTHESIS OF Δ^2 -OXAZOLINES, Δ^2 -OXAZINES, Δ^2 -THIAZOLINES AND Δ^2 -IMIDAZOLINES

Helmut Vorbrüggen^{*} and Konrad Krolikiewicz Research Laboratories, Schering AG, Berlin-Bergkamen, D-1000 Berlin 65, Germany

<u>Summary</u> - Carboxylic acids react with amino alcohols, amino mercaptans or diamines in the presence of triphenylphosphine, CCl_4 and tert. bases to afford in 50-75% yield the corresponding Δ^2 -oxazolines, Δ^2 -oxazines, Δ^2 -thiazolines and Δ^2 -imidazolines.


A recent publication¹, which came only now to our notice, prompts us to publish part of our own investigations on the synthesis of Δ^2 -oxazolines², Δ^2 -oxazolines³, Δ^2 -thiazolines⁴ and Δ^2 -imidazolines⁵.

Although these derivatives of carboxylic acids have very interesting biological and chemical properties, e.g. as starting materials for the corresponding aromatic heterocycles⁶ or in the case of Δ^2 -oxazolines as protecting groups for the carboxylic acid moiety², the hitherto known methods²⁻⁵ for their preparation require either vigorous conditions or aggressive reagents like SOCl₂. These methods are therefore not suitable for the conversion of rather labile carboxylic acids like prostaglandins into the aforementioned cyclic derivatives

We have found that aliphatic and aromatic carboxylic acids <u>1</u> can be readily converted in one reaction step in ca. 50-75% yield into their corresponding Δ^2 -oxazolines, Δ^2 -oxazines, Δ^2 -thiazolines and Δ^2 -imidazolines by reaction with amino alcohols, amino mercaptans and diamines <u>2</u> in the presence of ca. 3 equivalents each of triphenylphosphine, triethylamine, diisopropylethylamine or DBU and excess CCl₄ in acetonitrile⁷ or better in acetonitrile-pyridine (1:1) at room temperature. In this process, the starting carboxylic acids <u>1</u> and the

4471

amine moieties $\underline{2}$ are first converted via the activated triphenyl-phosphonium esters $\underline{3}$ into the intermediate amides $\underline{4}^8$ which are subsequently cyclized <u>in</u> situ to the desired derivatives <u>6</u>.

Since apparently the carboxylate anions as well as the amides $\frac{4}{2}$ are preferentially activated by the triphenylphosphine-CCl₄ reaction cascade⁷ in the presence of tert. bases, it is not necessary to protect aliphatic or aromatic hydroxyl, amino or sulfonamide groups present in the carboxyl <u>1</u> - or amine 2 - moiety. Thus benzoic acid <u>1a</u> (compare Table 1) and trisamine <u>2d</u> furnished the corresponding Δ^2 -oxazoline <u>6d</u> in 73% yield. Employing carboxylic acids containing hydroxy (or amino) groups as in m-hydroxy benzoic acid <u>1e</u> or prostaglandin PGF_{2α}⁹, 3 equivalents of triphenylphosphine in acetonitrile-pyridine (1:1) are added within 3-4 hours to <u>1</u>, ethanolamine <u>2a</u> and 3 equivalents of strong tertiary bases effects S_N^2 -displacement of aliphatic hydroxyl groups in <u>1</u> or <u>2</u> by chlorine⁷. Phenylacetic acid <u>1j</u> and 3-amino-1-propanol <u>2j</u> were readily converted into the 1,3- Δ^2 -oxazine <u>6j</u> in 51% yield. An aromatic 1,2-hydroxy-

amine like o-aminophenol and phenylacetic acid condensed to 2-benzylbenzoxazol <u>7</u>, mp. $32^{\circ}C^{10}$, in 56%, terephthalic acid to the bis- Δ^2 -oxazoline <u>8</u>, mp. $235^{\circ}C^{11}$ in 50% yield. Starting with the amide <u>4</u> (R₁ = C₆H₅NH; R₂-R₅ = H; n = 1; X = 0), the Δ^2 -oxazoline <u>9</u>, mp. $122^{\circ}C^{12}$, was obtained in 75% yield.

Reaction of benzoic acid with D(-)2-amino-2-phenylethanol <u>2b</u> furnished the Δ^2 -oxazoline <u>6b</u> as well as traces of the isomer <u>6c</u>. Hydrolysis of <u>6b</u> with aqueous hydrochloric acid afforded pure D(-) <u>2b</u>, mp. 75-77°C, thus proving the preferential activation of the amide carbonyl group in <u>4b</u> (X = 0, n = 1) to <u>5</u>. The isomeric compound <u>6c</u> is probably formed by transformation of the amino alcohol <u>2b</u> to the corresponding ethyleneimine⁷, formation of the N-benzoylethyleneimine and rearrangement to <u>6b</u> and <u>6c</u>. The reaction of benzoic acid with 2-mercaptoethylamine <u>2k</u> (X = S, n = 1) furnished the Δ^2 -thiazoline <u>6k</u> in 45% yield. If the S-triphenyl-phosphonium amide salt had been formed as intermediate instead of <u>5</u> (X = S), the corresponding Δ^2 -oxazoline <u>6a</u> would have been obtained instead of <u>6k</u>.

Employing triphenylphosphine-azoester¹³, $[(C_6H_5)_3^{\Theta}P-0-P(C_6H_5)_3]$ 2CF₃SO₃^{Θ}/ triethylamine¹⁴ or triphenylphosphine-2,2'-dipyridyldisulfide¹⁵ as reagents gave the derivatives <u>6</u> in about the same yields as with triphenylphosphine/ CCl₄, CBrCl₃, CBr₄ or C₂Cl₆. However, as yet no conversion of <u>1</u> or <u>4</u> to <u>6</u> could be effected using a commercial sample of polymeric triarylphosphine instead of triphenylphosphine.

For purification, the sensitive end products $\underline{6}$ were hitherto mostly distilled. They can, however, be readily chromatographed with only minute hydrolysis to the corresponding amides $\underline{4}$ if deactivated alumina (A IV - V) or E. Merck silicagel containing 40% H₂O are employed.

Using these methods, drugs containing carboxyl groups like the aforementioned prostaglandins, diuretics and antiinflammatory agents, e.g. indomethacin, can be easily converted into their corresponding derivatives $\underline{6}$, some of which possess very interesting intrinsic biological activities⁹.

Table 1

	<u>1</u>	2						$\underline{6}^{\mathbf{a}}$	
	R ₁	R2	R ₃	R4	R ₅	n	х	yield (%)	mp. (bp.)
a	с ₆ н ₅	Н	н	Н	Н	1	0	71.7	(110 [°] C/0.5 mbar)
b	^с 6 ^н 5	^с 6 ^н 5	н	Н	Н	1	0	64	
с	с ₆ н ₅	Н	Н	^с 6 ^н 5	Н	1	0		
d	^с 6 ^н 5	сн ₂ он	сн ₂ он	н	Н	1	0	73	140°C
е	3-hydroxy pheny1	СНЗ	сн3	н	н	1	0	67.5	159 - 161 ⁰ C
f	3-amino phenyl	Н	Н	н	н	1	0	63	125 - 127 [°] C
g	3-pyridyl	сн3	СН3	н	Н	1	0	73.8	(120°C/0.5 mbar)
h	benzyl	н	Н	н	Н	1	0	51.7	(95 [°] C/0.3 mm)
i	benzyl	CH ₃	сн3	н	Н	1	0	68.7	(155-160 [°] C/15 mm)
j	benzy1	н	Н	Н	н	2	0	51.4	(125 [°] C/0.2 mm)
k	^С 6 ^Н 5	н	Н	н	н	1	S	45	(150°C/1.5 mbar)
1	^C 6 ^H 5	Н	Н	Н	н	1	NH	46.1	97-99°C (185°C/1 mbar)

^aall compounds showed the expected analytical and spectral data

References

- 1) M.J. Miller, P.G. Mattingly, M.A. Morrison and J.F. Korwin, J. Amer. Chem. Soc. <u>102</u>, 7026 (1980).
- 2) R.H. Wiley and L.L. Bennett, Chem. Rev. <u>44</u>, 447 (1949), J.A. Frump., ibid. <u>71</u>, 483 (1971), A.I. Meyers and E.D. Mikelich, Angew. Chem. <u>88</u>, 321 (1976).
- 3) T. Kato and N. Katagiri, Heterocycles 14, 1333 (1980).
- 4) R.C. Elderfield, Heterocyclic Compounds Vol. 5, page 679-685 (1957), John Wiley and Sons, New York-London.
- 5) R.J. Ferm and J.L. Riebsomer, Chem. Rev. <u>54</u>, 593 (1954).
 6) D.L. Evans, D.K. Minster, V. Jordis, S.M. Hecht, A.L. Mazzee and A.I. Meyers, J. Org. Chem. <u>44</u>, 497 (1979).
- 7) R. Appel, Angew. Chem. 87, 863 (1975), Angew. Chem. Int. Ed. 14, 801 (1975)
- 8) L.C. Barstow and V.J. Haruby, J. Org. Chem. <u>36</u>, 1305 (1971).
- 9) These results will be reported elsewhere.
- 10) R. Higginbottom and H. Suschitzky, J. Chem. Soc. (London) <u>1962</u>, 2367.
 11) German Pat. Appl. 2.158.615, C. A. <u>79</u>, 92196a (1973).
 12) E. Pfeil and K. Milzner, Angew. Chem. <u>78</u>, 677 (1966).
 13) O. Mitsunobu, Synthesis <u>1981</u>, 1.

- 14) J.B. Hendrickson and S.M. Schwartzman, Tetrahedron Lett. <u>1975</u>, 277. A. Aaberg, T. Gramstad and S. Husebye, ibid. <u>1979</u>, 2263.
 15) T. Mukaiyama, Angew. Chem. Int. Ed. <u>15</u>, 94 (1976).

(Received in Germany 7 July 1981)